Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology

23Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559–42.546% and 18.230–38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 μg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.

Cite

CITATION STYLE

APA

Mejía-Méndez, J. L., Navarro-López, D. E., Sanchez-Martinez, A., Ceballos-Sanchez, O., Garcia-Amezquita, L. E., Tiwari, N., … López-Mena, E. R. (2024). Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants, 13(2). https://doi.org/10.3390/antiox13020213

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free