Abstract
While the amount of water used by a crop can be measured using lysimeters or eddy covariance systems, it is more common to estimate this quantity based on weather data and crop-related factors. Among these approaches, the standard crop coefficient method has gained widespread use. A limitation of the standard crop coefficient approach is that it applies to “standard conditions” that are invariant from field to field. In this article, we describe a method for estimating daily crop water use (CWU) that is specific to individual fields. This method, the “spectral crop coefficient” approach, utilizes a crop coefficient numerically equivalent to the crop ground cover observed in a field using remote sensing. This “spectral crop coefficient” Ksp is multiplied by potential evapotranspiration determined from standard weather observations to estimate CWU. We present results from a study involving three farmers' fields in the Texas High Plains in which CWU estimated using the Ksp approach is compared to observed values obtained from eddy covariance measurements. Statistical analysis of the results suggests that the Ksp approach can produce reasonably accurate estimates of daily CWU under a variety of irrigation strategies from fully irrigated to dryland. These results suggest that the Ksp approach could be effectively used in applications such as operational irrigation scheduling, where its field-specific nature could minimize over-irrigation and support water conservation.
Cite
CITATION STYLE
Rajan, N., & Maas, S. J. (2014). Spectral Crop Coefficient Approach for Estimating Daily Crop Water Use. Advances in Remote Sensing, 03(03), 197–207. https://doi.org/10.4236/ars.2014.33013
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.