Abstract
Transcriptional activation of the rhesus monkey GH-variant gene in syncytiotrophoblasts is developmentally regulated by trophoblast-specific and cAMP-responsive mechanisms. Progressive deletions of 5'-flanking DNA defined the most proximal 140 bp as the minimal region retaining full cAMP-stimulated mGH-V transcription. To identify the regions of this promoter critical for transcription, transient transfections of reporter plasmids containing systematic 10 base mutations throughout this proximal region were performed. Mutation of the region from -140/-131 decreased transcription in syncytiotrophoblasts by 50%, and gel mobility-shift analyses demonstrated that Sp1 and Sp3 bound to a region containing a GGGAGG motif at -136/-131. Mutation of the -62/-53 region decreased transcriptional activation by 66-99%, and Sp1 and Sp3 bound to a GGTGGG motif overlapping this region (at -65/-60). Selective mutation of this Sp1/Sp3 site decreased basal transcription by approximately 80%, and cAMP-stimulated transcription by up to 75% (with the greatest effect in primary syncytiotrophoblast cultures), indicating that the Sp1/Sp3 site is critical for transcriptional activation. Mutations in the regions adjacent to the Sp1/Sp3 sites (-130/-111 and -52/-43) also dramatically reduced (by 75%) transcriptional activation in trophoblasts. We conclude that two Sp1/Sp3 sites as well as additional elements directly adjacent to these sites contribute to trophoblast-specific cAMP-responsiveness of the mGH-V proximal promoter.
Cite
CITATION STYLE
Schanke, J. T., Durning, M., Johnson, K. J., Bennett, L. K., & Golos, T. G. (1998). Sp1/Sp3-binding sites and adjacent elements contribute to basal and cyclic adenosine 3’,5’-monophosphate-stimulated transcriptional activation of the rhesus growth hormone-variant gene in trophoblasts. Molecular Endocrinology, 12(3), 405–417. https://doi.org/10.1210/mend.12.3.0071
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.