Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles

56Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

This study presents a novel decentralised hierarchical global energy management control strategy for a group of connected four-wheel-drive hybrid electric vehicles (HEVs) in urban road conditions. In the higher level controller, signal phase and timing information and the optimal cruising velocity are combined to generate the target velocities for the HEVs. A model predictive control framework that focuses on the tracking of the target velocity and the associated desired control variable for every individual vehicle is proposed for the prediction of the optimal velocity that compromises fuel economy, mobility and safety. In the lower level controller, a dynamic programming problem is formulated that utilises the predicted velocity for the global energy management optimisation of every individual HEV. Simulation results validate the advantages of the proposed higher and lower level controllers.

Cite

CITATION STYLE

APA

Qiu, L., Qian, L., Zomorodi, H., & Pisu, P. (2017). Global optimal energy management control strategies for connected four-wheel-drive hybrid electric vehicles. IET Intelligent Transport Systems, 11(5), 264–272. https://doi.org/10.1049/iet-its.2016.0197

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free