An inhibitor of neovascularization from the conditioned media of scapular chondrocytes established and maintained in serum-free culture has been isolated and characterized. To determine whether this chondrocyte-derived inhibitor (ChDI) was capable of inhibiting neovascularization in vivo, this protein was assayed in the chick chorioallantoic membrane assay. ChDI was a potent inhibitor of angiogenesis in vivo (4 μg = 87% avascular zones). This inhibitor is also an inhibitor of fibroblast growth factor-stimulated capillary endothelial cell (EC) proliferation and migration, as well as being an inhibitor of mammalian collagenase. ChDI significantly suppressed capillary EC proliferation in a dose-dependent, reversible manner with an IC50 (the inhibitory concentration at which 50% inhibition is achieved) of 2.025 μg/ml. Inhibition by ChDI of growth factor-stimulated capillary EC migration was also observed using a modified Boyden chamber assay (IC50 = 255 ng/ml). SDS-PAGE analysis followed by silver staining of ChDI purified to apparent homogeneity revealed a single band having an Mr of 35,550. Gel elution experiments demonstrated that only protein eluting at this molecular weight was anti-angiogenic. These studies are the first demonstration that chondrocytes in culture can produce a highly enriched, potent inhibitor of neovascularization which also inhibits collagenase.
CITATION STYLE
Moses, M. A., Sudhalter, J., & Langer, R. (1992). Isolation and characterization of an inhibitor of neovascularization from scapular chondrocytes. Journal of Cell Biology, 119(2), 475–482. https://doi.org/10.1083/jcb.119.2.475
Mendeley helps you to discover research relevant for your work.