Transfer Learning-Based Classification Comparison of Stroke

  • ALHATEMİ R
  • SAVAŞ S
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

One type of brain disease that significantly harms people's lives and health is stroke. The diagnosis and management of strokes both heavily rely on the quantitative analysis of brain Magnetic Resonance (MR) images. The early diagnosis process is of great importance for the prevention of stroke cases. Stroke prediction is made possible by deep neural networks with the capacity for enormous data learning. Therefore, in thus study, several deep neural network models, including DenseNet121, ResNet50, Xception, MobileNet, VGG16, and EfficientNetB2 are proposed for transfer learning to classify MR images into two categories (stroke and non-stroke) in order to study the characteristics of the stroke lesions and achieve full intelligent automatic detection. The study dataset comprises of 1901 training images, 475 validation images, and 250 testing images. On the training and validation sets, data augmentation was used to increase the number of images to improve the models’ learning. The experimental results outperform all the state of arts that were used the same dataset. The overall accuracy of the best model is 98.8% and the same value for precision, recall, and f1-score using the EfficientNetB2 model for transfer learning.One type of brain disease that significantly harms people's lives and health is stroke. The diagnosis and management of strokes both heavily rely on the quantitative analysis of brain Magnetic Resonance (MR) images. The early diagnosis process is of great importance for the prevention of stroke cases. Stroke prediction is made possible by deep neural networks with the capacity for enormous data learning. Therefore, in thus study, several deep neural network models, including DenseNet121, ResNet50, Xception, MobileNet, VGG16, and EfficientNetB2 are proposed for transfer learning to classify MR images into two categories (stroke and non-stroke) in order to study the characteristics of the stroke lesions and achieve full intelligent automatic detection. The study dataset comprises of 1901 training images, 475 validation images, and 250 testing images. On the training and validation sets, data augmentation was used to increase the number of images to improve the models’ learning. The experimental results outperform all the state of arts that were used the same dataset. The overall accuracy of the best model is 98.8% and the same value for precision, recall, and f1-score using the EfficientNetB2 model for transfer learning.

Cite

CITATION STYLE

APA

ALHATEMİ, R. A. J., & SAVAŞ, S. (2022). Transfer Learning-Based Classification Comparison of Stroke. Computer Science. https://doi.org/10.53070/bbd.1172807

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free