Abstract
Purpose: Because of the potential for affecting multiple signaling pathways, inhibition of Hsp90 may provide a strategy for enhancing tumor cell radiosensitivity. Therefore, we have investigated the effects of the orally bioavailable Hsp90 inhibitor 17-(dimethylaminoethylamino)-17- demethoxygeldanamycin (17-DMAG) on the radiosensitivity of human tumor cells in vitro and grown as tumor xenografts. Experimental Design: The effect of 17-DMAG on the levels of three proteins (Raf-1, ErbB2, and Akt) previously implicated in the regulation of radiosensitivity was determined in three human solid tumor cell lines. A clonogenic assay was then used to evaluate cell survival after exposure to 17-DMAG followed by irradiation. For mechanistic insight, the G 2- and S-phase checkpoints were evaluated in 17-DMAG-treated cells. Finally, the effect of in vivo administration of 17-DMAG in combination with radiation on the growth rate of xenograft tumors was determined. Results: 17-DMAG exposure reduced the levels of the three radiosensitivity-associated proteins in a cell line-specific manner with ErbB2 being the most susceptible. Corresponding concentrations of 17-DMAG enhanced the radiosensitivity of each of the tumor cell lines. This sensitization seemed to be the result of a 17-DMAG-mediated abrogation of the G2- and S-phase cell cycle checkpoints. The oral administration of 17-DMAG to mice bearing tumor xenografts followed by irradiation resulted in a greater than additive increase in tumor growth delay. Conclusions: These data indicate that 17-DMAG enhances the in vitro and in vivo radiosensitivity of human tumor cells. The mechanism responsible seems to involve the abrogation of radiation-induced G2- and S-phase arrest.
Cite
CITATION STYLE
Bull, E. E. A., Dote, H., Brady, K. J., Burgan, W. E., Carter, D. J., Cerra, M. A., … Tofilon, P. J. (2004). Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17- demethoxygeldanamycin. Clinical Cancer Research, 10(23), 8077–8084. https://doi.org/10.1158/1078-0432.CCR-04-1212
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.