Economic and ecological design of hybrid renewable energy systems based on a developed IWO/BSA algorithm

18Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

In this paper, an optimal design of a microgrid including four houses in Dakhla city (Mo-rocco) is proposed. To make this study comprehensive and applicable to any hybrid system, each house has a different configuration of renewable energies. The configurations of these four houses are PV/wind turbine (WT)/biomass/battery, PV/biomass, PV/diesel/battery, and WT/diesel/battery systems. The comparison factor among these configurations is the cost of energy (COE), comparative index, where the load is different in the four houses. Otherwise, the main objective function is the minimization of the net present cost (NPC), subject to several operating constraints, the power loss, the power generated by the renewable sources (renewable fraction), and the availability. This objective function is achieved using a developed optimization algorithm. The main contribution of this paper is to propose and apply a new optimization technique for the optimal design of a mi-crogrid considering different economic and ecological aspects. The developed optimization algorithm is based on the hybridization of two metaheuristic algorithms, the invasive weed optimization (IWO) and backtracking search algorithm (BSA), with the aim of collecting the advantages of both. The proposed hybrid optimization algorithm (IWO/BSA) is compared with the original two optimization methods (IWO and BSA) as well as other well‐known optimization methods. The results in-dicate that PV/biomass and PV/diesel/battery systems have the best energy cost using the proposed IWO/BSA algorithm with 0.1184 $/kWh and 0.1354 $/kWh, respectively. The best system based on its LCOE factor is the PV/biomass which represents an NPC of 124,689 $, the size of this system is 349.55 m2 of PV area and the capacity of the biomass is 18.99 ton/year. The PV/diesel/battery option has also good results, with a system NPC of 142,233 $, the size of this system is about 391.39 m2 of PV area, rated power of diesel generator about 0.55 kW, and a battery capacity of 12.97 kWh. Oth-erwise, the proposed IWO/BSA has the best convergence in all cases. It is observed that the wind turbine generates more dumped power, and the PV system is highly suitable for the studied area.

Cite

CITATION STYLE

APA

Kharrich, M., Kamel, S., Ellaia, R., Akherraz, M., Alghamdi, A. S., Abdel‐akher, M., … Mosaad, M. I. (2021). Economic and ecological design of hybrid renewable energy systems based on a developed IWO/BSA algorithm. Electronics (Switzerland), 10(6), 1–31. https://doi.org/10.3390/electronics10060687

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free