Abstract
The thyrotropin (TSH) receptor (TSHR) signals via G proteins of all four classes and β-arrestin 1. Stimulation of TSHR leads to increasing cAMP production that has been reported as a monotonic dose-response curve that plateaus at high TSH doses. In HEK 293 cells overexpressing TSHRs (HEK-TSHR cells), we found that TSHR activation exhibits an “inverted U-shaped dose-response curve” with increasing cAMP production at low doses of TSH and decreased cAMP production at high doses (>1 mU/ml). Since protein kinase A inhibition by H-89 and knockdown of b-arrestin 1 or β-arrestin 2 did not affect the decreased cAMP production at high TSH doses, we studied the roles of TSHR downregulation and of Gi/Go proteins. A high TSH dose (100 mU/ml) caused a 33% decrease in cell-surface TSHR. However, because inhibiting TSHR downregulation with combined expression of a dominant negative dynamin 1 and β-arrestin 2 knockdown had no effect, we concluded that downregulation is not involved in the biphasic cAMP response. Pertussis toxin, which inhibits activation of Gi/Go, abolished the biphasic response with no statistically significant difference in cAMP levels at 1 and 100 mU/ml TSH. Concordantly, co-knockdown of Gi/Go proteins increased cAMP levels stimulated by 100 mU/ml TSH from 55% to 73% of the peak level. These data show that biphasic regulation of cAMP production is mediated by Gs and Gi/Go at low and high TSH doses, respectively, which may represent a mechanism to prevent overstimulation in TSHR-expressing cells.
Cite
CITATION STYLE
Neumann, S., Malik, S. S., Marcus-Samuels, B., Eliseeva, E., Jang, D., Klubo-Gwiezdzinska, J., … Gershengorn, M. C. (2020). Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by Gs and Gi/o proteins. Molecular Pharmacology, 97(1), 2–8. https://doi.org/10.1124/mol.119.117382
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.