Maxwell-Wagner-Sillars Dynamics and Enhanced Radio-Frequency Elastomechanical Susceptibility in PNIPAm Hydrogel-KF-doped Barium Titanate Nanoparticle Composites

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Maxwell-Wagner-Sillars (MWS) dynamics and electromagnetic radio-frequency (RF) actuation of the volumetric phase change are investigated in a hybrid polymer composite consisting of hydrogel suspended with high-k nanoparticles. Poly(N-isopropylacrylamide) (PNIPAm) hydrogels were combined with 10% KF-doped barium titanate (Ba0.9 K0.1 TiO2.9F0.1, KBT) nanoparticles with highly anisotropic dielectric properties using poly(vinyl alcohol) (PVA) to form a nanoparticle-hydrogel composite. Whereas the addition of PVA to the synthesis maintains a strong volumetric phase transition with polarization and relaxation features similar to standard bulk PNIPAm, the addition of KBT nanoparticles results in reduced volumetric phase transition and MWS polarization due to charge screening of intramolecular interactions. The added nanoparticles and modified synthesis process enhanced the dielectric permittivity of bulk PNIPAm, increased RF conductivity up to 7×, and decreased the specific heat while still maintaining a discontinuous volumetric phase transition. An RF antenna emitting at 544 kHz was only able to actuate a phase change in the composites with modified synthesis versus bulk PNIPAm. Measured heating rates were 3× greater than that of un-modified PNIPAm.

Cite

CITATION STYLE

APA

Walker, E., Akishige, Y., Cai, T., Roberts, J., Shepherd, N., Wu, S., … Neogi, A. (2019). Maxwell-Wagner-Sillars Dynamics and Enhanced Radio-Frequency Elastomechanical Susceptibility in PNIPAm Hydrogel-KF-doped Barium Titanate Nanoparticle Composites. Nanoscale Research Letters, 14(1). https://doi.org/10.1186/s11671-019-3171-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free