Robustness of Central Composite Design and Modified Central Composite Design to a Missing Observation for Non-Standard Models

  • E.I. J
  • E.H. E
  • M.P. I
  • et al.
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Missing observations in an experimental design may lead to ambiguity in decision making thereby bringing an experiment to disrepute. Robustness, therefore, enables a process, not to break down in the presence of missing observations. This work constructed a modified central composite design (MCCD) from a four-variable central composite design (CCD) augmented with four center points using the leverage of a hat-matrix. The robustness of the CCD and MCCD were assessed when a design point is missing at the factorial, axial, and center points of the experiment, for a non-standard model, using the loss criterion, D-optimality, D-efficiency, and relative D-efficiency. When the designs are complete the MCCD shows higher D-efficiency and D-optimality for the non-standard model when compared to the CCD. In the absence of an observation from any of the designs, the CCD is found to be a more robust and efficient design compared to the MCCD as it has overall lower loss values at all the factors levels.

Cite

CITATION STYLE

APA

E.I., J., E.H., E., M.P., I., & E., A. (2021). Robustness of Central Composite Design and Modified Central Composite Design to a Missing Observation for Non-Standard Models. African Journal of Mathematics and Statistics Studies, 4(2), 25–40. https://doi.org/10.52589/ajmss-c5nkoi81

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free