Background: Post-operative cardiac complications occur infrequently but contribute to mortality after liver transplantation (LT). Artificial intelligence-based algorithms based on electrocardiogram (AI-ECG) are attractive for use during pre-operative evaluation to screen for risk of post-operative cardiac complications, but their use for this purpose is unknown. Aims: The aim of this study was to evaluate the performance of an AI-ECG algorithm in predicting cardiac factors such as asymptomatic left ventricular systolic dysfunction or potential for developing post-operative atrial fibrillation (AF) in cohorts of patients with end-stage liver disease either undergoing evaluation for transplant or receiving a liver transplant. Methods: A retrospective study was performed in two consecutive adult cohorts of patients who were either evaluated for LT or underwent LT at a single center between 2017 and 2019. ECG were analyzed using an AI-ECG trained to recognize patterns from a standard 12-lead ECG which could identify the presence of left ventricular systolic dysfunction (LVEF < 50%) or subsequent atrial fibrillation. Results: The performance of AI-ECG in patients undergoing LT evaluation is similar to that in a general population but was lower in the presence of prolonged QTc. AI-ECG analysis on ECG in sinus rhythm had an AUROC of 0.69 for prediction of de novo post-transplant AF. Although post-transplant cardiac dysfunction occurred in only 2.3% of patients in the study cohorts, AI-ECG had an AUROC of 0.69 for prediction of subsequent low left ventricular ejection fraction. Conclusions: A positive screen for low EF or AF on AI-ECG can alert to risk of post-operative cardiac dysfunction or predict new onset atrial fibrillation after LT. The use of an AI-ECG can be a useful adjunct in persons undergoing transplant evaluation that can be readily implemented in clinical practice. Graphical Abstract: [Figure not available: see fulltext.].
CITATION STYLE
Zaver, H. B., Mzaik, O., Thomas, J., Roopkumar, J., Adedinsewo, D., Keaveny, A. P., & Patel, T. (2023). Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates. Digestive Diseases and Sciences, 68(6), 2379–2388. https://doi.org/10.1007/s10620-023-07928-y
Mendeley helps you to discover research relevant for your work.