Synthesis, In Vitro Antiproliferative Activity, and In Silico Evaluation of Novel Oxiranyl-Quinoxaline Derivatives

9Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The quinoxaline core is a promising scaffold in medicinal chemistry. Multiple quinoxaline derivatives, such as the topoisomerase IIβ inhibitor XK-469 and the tissue transglutaminase 2 in-hibitor GK-13, have been evaluated for their antiproliferative activity. Previous work reported that quinoxaline derivatives bearing an oxirane ring present antiproliferative properties against neurob-lastoma cell lines SK-N-SH and IMR-32. Likewise, quinoxalines with an arylethynyl group displayed promising antineoplastic properties against glioblastoma and lung cancer cell lines, U87-MG and A549 respectively. Here, 40 new quinoxaline derivatives bearing an oxirane ring were synthesized using a tetrakis(dimethylamino)ethylene (TDAE) strategy and a Sonogashira cross-coupling reaction. Each reaction with TDAE furnished a pair of diastereoisomers cis and trans. These new compounds formed two series according to the substitution of position 2 on the quinoxaline core, with chlorine or phenylacetylene respectively. Each of these isomers was evaluated for antiproliferative activity against neuroblastoma cell lines SK-N-SH and IMR-32 by MTT assay. All cell viability assay results were analyzed using R programming, as well as a statistical comparison between groups of com-pounds. Our evaluation showed no difference in drug sensitivity between the two neuroblastoma cell lines. Moreover, trans derivatives were observed to display better activities than cis derivatives, leading us to conclude that stereochemistry plays an important role in the antiproliferative activity of these compounds. Further support for this hypothesis is provided by the lack of improvement in antineoplastic activity following the addition of the phenylacetylene moiety, probably due to steric hindrance. As a result, compounds with nitrofuran substituents from the TDAE series demonstrated the highest antiproliferative activity with IC50 = 2.49 ± 1.33 µM and IC50 = 3.96 ± 2.03 µM for compound 11a and IC50 = 5.3 ± 2.12 µM and IC50 = 7.12 ± 1.59 µM for compound 11b against SK-N-SH and IMR-32, respectively. Furthermore, an in silico study was carried out to evaluate the mechanism of action of our lead compounds and predict their pharmacokinetic properties.

Cite

CITATION STYLE

APA

Montero, V., Montana, M., Khoumeri, O., Correard, F., Estève, M. A., & Vanelle, P. (2022). Synthesis, In Vitro Antiproliferative Activity, and In Silico Evaluation of Novel Oxiranyl-Quinoxaline Derivatives. Pharmaceuticals, 15(7). https://doi.org/10.3390/ph15070781

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free