Abstract
Burn infection delays wound healing and increases the burn patient mortality. Consequently, a new dressing with antibacterial and anti-inflammatory dual properties is urgently required for wound healing. In this study, we propose a combination of methacrylate gelatin (GelMA) hydrogel system with silver nanoparticles embed in γ-cyclodextrin metal–organic frameworks (Ag@MOF) and hyaluronic acid-epigallocatechin gallate (HA-E) for the burn wound infection treatment. Ag@MOF is used as an antibacterial agent and epigallocatechin gallate (EGCG) has exhibited biological properties of anti-inflammation and antibacterial. The GelMA/HA-E/Ag@MOF hydrogel enjoys suitable physical properties and sustained release of Ag+. Meanwhile, the hydrogel has excellent biocompatibility and could promote macrophage polarization from M1 to M2. In vivo wound healing evaluations further demonstrate that the GelMA/HA-E/Ag@MOF hydrogel reduces the number of the bacterium efficiently, accelerates wound healing, promotes early angiogenesis, and regulates immune reaction. A further evaluation indicates that the noncanonical Wnt signal pathway is significantly activated in the GelMA/HA-E/Ag@MOF hydrogel treated group. In conclusion, the GelMA/HA-E/Ag@MOF hydrogel could serve as a promising multifunctional dressing for the burn wound healing.
Author supplied keywords
Cite
CITATION STYLE
Xiong, Y., Xu, Y., Zhou, F., Hu, Y., Zhao, J., Liu, Z., … Chen, L. (2023). Bio-functional hydrogel with antibacterial and anti-inflammatory dual properties to combat with burn wound infection. Bioengineering and Translational Medicine, 8(1). https://doi.org/10.1002/btm2.10373
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.