Adaptive immunity selects against malaria infection blocking mutations

2Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection, has reached high frequencies in certain human populations. Conversely, mutations capable of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we present an evolutionary-epidemiological model of malaria which demonstrates that if adaptive immunity against the most virulent effects of malaria is gained rapidly by the host, mutations which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the surprising prediction that mutations which block P. falciparum infection are most likely to be found in populations experiencing low or infrequent malaria transmission, and (iii) predict that immunity against some of the virulent effects of P. vivax malaria may be built up over the course of many infections.

Cite

CITATION STYLE

APA

Penman, B. S., & Gandon, S. (2020). Adaptive immunity selects against malaria infection blocking mutations. PLoS Computational Biology, 16(10). https://doi.org/10.1371/journal.pcbi.1008181

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free