Effects of Growth Factor Combinations TGFβ3, GDF5 and GDF6 on the Matrix Synthesis of Nucleus Pulposus and Nasoseptal Chondrocyte Self-Assembled Microtissues

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

There has been significant interest in identifying alternative cell sources and growth factor stimulation to improve matrix synthesis for disc repair. Recent work has identified nasoseptal chondrocytes (NC) as a possible alternative cell source with significant matrix-forming abilities. While various growth factors such as members of the TGFβ superfamily have been explored to enhance matrix formation, no consensus exists as to the optimum growth factor needed to induce cells towards a discogenic phenotype. This study assessed both nucleus pulposus (NP) and NC microtissues of different densities (1000, 2500 or 5000 cells/microtissue) stimulated by individual or combinations of the growth factors TGFβ3, GDF5, and GDF6. Lower cell densities result in increased sGAG/DNA and collagen/DNA levels due to higher nutrient availability levels. Our findings suggest that growth factors exert differential effects on matrix synthesis depending on the cell type. NP cells were found to be relatively insensitive to the different growth factor types examined in isolation or in combination. Overall, NCs exhibited a higher propensity to form extracellular matrix compared to NP cells. In addition, stimulating NC-microtissues with GDF5 or TGFβ3 alone induced enhanced matrix formation and may be an appropriate growth factor to stimulate this cell type for disc regeneration.

Cite

CITATION STYLE

APA

Samuel, S., McDonnell, E. E., & Buckley, C. T. (2022). Effects of Growth Factor Combinations TGFβ3, GDF5 and GDF6 on the Matrix Synthesis of Nucleus Pulposus and Nasoseptal Chondrocyte Self-Assembled Microtissues. Applied Sciences (Switzerland), 12(3). https://doi.org/10.3390/app12031453

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free