Dispersion of multi-walled carbon nanotubes stabilized by humic acid in sustainable cement composites

28Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Multi-walled carbon nanotubes (MWCNTs) are promising nanoreinforcing materials for cement-based composites due to their superior material properties. Dispersion of MWCNTs is key for achieving the most effective way of enhancing efficiency, which is challenging in an alkaline cementitious environment. In this study, humic acid (HA) was used to stabilize the degree of dispersion of MWCNTs in an alkaline environment. The efficiency of HA in stabilizing MWCNT dispersion in cement composites was characterized using an ultraviolet spectrophotometer. The influences of HA on the workability and mechanical properties of ordinary Portland cement (OPC) reinforced with MWCNTs were evaluated, and the results revealed that the addition of HA can improve the stability of MWCNT dispersion in an alkaline environment. A concentration of 0.12 wt.% HA/S added to MWCNT suspensions was found to perform the best for improving the dispersion of MWCNTs. The addition of HA results in a decreased workability of the OPC pastes but has little influence on the strength performance. HA can affect the mechanical properties of OPC reinforced with MWCNTs by influencing the dispersion degree of the MWCNTs. An optimum range of HA (0.05–0.10 wt.%) is required to achieve the optimum reinforcing efficiency of MWCNTs.

Cite

CITATION STYLE

APA

Gao, Y., Jing, H., Du, M., & Chents, W. (2018). Dispersion of multi-walled carbon nanotubes stabilized by humic acid in sustainable cement composites. Nanomaterials, 8(10). https://doi.org/10.3390/nano8100858

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free