MicroRNA-125a-5p modulates the proliferation and apoptosis of TM4 Sertoli cells by targeting RAB3D and regulating the PI3K/AKT signaling pathway

13Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sertoli cells provide protection and nutrition for developing sperm. Each stage of sperm development occurs on the surface of Sertoli cells. MicroRNA (MiR)-125a-5p is involved in male reproduction. The current research aimed to probe the role of miR-125a-5p in Sertoli cell function. Functionally, miR-125a-5p knockdown facilitated Sertoli cell proliferation, while miR-125a-5p overexpression suppressed Sertoli cell proliferation, as evidenced by 5-ethynyl-20-deoxyuridine incorporation assay. Additionally, miR-125a-5p knockdown inhibited Sertoli cell apoptosis, while miR-125a-5p upregulation facilitated Sertoli cell apoptosis, as evidenced by flow cytometry analysis. Computationally, we identified four predicted mRNA targets of miR-125a-5p. Based on the results of luciferase reporter assay, miR-125a-5p was confirmed to bind to the predicted sequence in the Ras-related protein Rab-3D (RAB3D) 3'UTR. Rescue experiments showed that miR-125a-5p suppressed the proliferative ability of TM4 Sertoli cells and facilitated their apoptosis by targeting RAB3D. Finally, our data confirmed that miR-125a-5p and RAB3D modulated activation of the PI3K/AKT pathway. In conclusion, our data showed that miR-125a-5p regulated Sertoli cell proliferation and apoptosis by targeting RAB3D and regulating the PI3K/AKT pathway.

Cite

CITATION STYLE

APA

Teng, F., Hu, F., & Zhang, M. (2021). MicroRNA-125a-5p modulates the proliferation and apoptosis of TM4 Sertoli cells by targeting RAB3D and regulating the PI3K/AKT signaling pathway. Molecular Human Reproduction, 27(9). https://doi.org/10.1093/molehr/gaab049

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free