Vertical profiling of atmospheric refractivity from ground-based GPS

82Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Atmospheric refractivity is typically estimated in situ from radiosonde measurements, which are expensive and may undersample the spatial and temporal variability of weather phenomena. We estimate refractivity structure near San Diego, California, using ray propagation models to fit measured GPS tropospheric delays in a least squares metric. We evaluate the potential and the limitations of ground-based GPS measurements for characterizing atmospheric refractivity, and we compare refractivity structure estimated from GPS sensing with that measured by nearby radiosondes. The results suggest that ground-based GPS provides significant constraint of inhomogeneous atmospheric refractivity, despite certain fundamental limitations of ground-based measurements. Radiosondes typically are launched just a few times daily. Consequently, estimates of temporally and spatially varying refractivity that assimilate GPS delays could substantially improve over estimates using radiosonde data alone.

Cite

CITATION STYLE

APA

Lowry, A. R., Rocken, C., Sokolovskiy, S. V., & Anderson, K. D. (2002). Vertical profiling of atmospheric refractivity from ground-based GPS. Radio Science, 37(3), 13-1-13–19. https://doi.org/10.1029/2000rs002565

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free