Increased Hemichannel Activity Displayed by a Connexin43 Mutation Causing a Familial Connexinopathy Exhibiting Hypotrichosis with Follicular Keratosis and Hyperostosis

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Mutations in the GJA1 gene that encodes connexin43 (Cx43) cause several rare genetic disorders, including diseases affecting the epidermis. Here, we examined the in vitro functional consequences of a Cx43 mutation, Cx43-G38E, linked to a novel human phenotype of hypotrichosis, follicular keratosis and hyperostosis. We found that Cx43-G38E was efficiently translated in Xenopus oocytes and localized to gap junction plaques in transfected HeLa cells. Cx43-G38E formed functional gap junction channels with the same efficiency as wild-type Cx43 in Xenopus oocytes, although voltage gating of the gap junction channels was altered. Notably, Cx43-G38E significantly increased membrane current flow through the formation of active hemichannels when compared to wild-type Cx43. These data demonstrate the association of increased hemichannel activity to a connexin mutation linked to a skeletal-cutaneous phenotype, suggesting that augmented hemichannel activity could play a role in skin and skeletal disorders caused by human Cx43 mutations.

Cite

CITATION STYLE

APA

Crouthamel, O. E., Li, L., Dilluvio, M. T., & White, T. W. (2023). Increased Hemichannel Activity Displayed by a Connexin43 Mutation Causing a Familial Connexinopathy Exhibiting Hypotrichosis with Follicular Keratosis and Hyperostosis. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24032222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free