Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This artice is free to access.

Abstract

Background: The aim of this study is to explore the effect of microRNA-103a (miR-103a) on astrocytes activation and hippocampal neuron injury in epilepsy rats by targeting brain-derived neurotrophic factor (BDNF). Methods: The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successful modeled rats were intralateroventricularly microinjected with miR-103a inhibitors, inhibitors negative control (NC), siRNA-NC and BDNF-siRNA, respectively. The RT-qPCR and western blot analysis were used to detect the expression of miR-103a, BDNF and glial fibrillary acidic protein (GFAP) in hippocampus tissues of rats. TUNEL staining was used to detect the apoptosis of hippocampal neurons. The RT-PCR and ELISA was used to detect the levels of TNF-α and IL-6 in hippocampal tissues and in serum, respectively. Results: Increased expression of miR-103a, GFAP, and number of apoptotic neurons, decreased expression of BDNF and number of surviving neurons were found in hippocampus tissues of epilepsy rats. After miR-103a inhibitors interfered with epilepsy rats, there showed decreased expression of miR-103a and GFAP, increased expression of BDNF and decreased number of apoptotic neuron as well as increased number of surviving neurons. Compared with miR-103a inhibitors alone, epilepsy rats treated with BDNF-siRNA combined with miR-103a inhibitors significantly increased expression of GFAP in hippocampal tissues of epilepsy rats, increased number of apoptotic neurons and significantly decreased the number of surviving neurons. Conclusion: Our study provides evidence that the inhibition of miR-103a can inhibit the activation of astrocytes in hippocampus tissues and improve the pathological injury of neurons of epilepsy rats by regulating BDNF gene.

Cite

CITATION STYLE

APA

Zheng, P., Bin, H., & Chen, W. (2019). Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer Cell International, 19(1). https://doi.org/10.1186/s12935-019-0821-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free