Abstract
Calcium transport is essential for bivalves to be able to build and maintain their shells. Ionized calcium (Ca2þ) is taken up from the environment and eventually transported through the outer mantle epithelium (OME) to the shell growth area. However, the mechanisms behind this process are poorly understood. The objective of the present study was to characterize the Ca2þ transfer performed by the OME of the Pacific oyster, Crassostrea gigas, as well as to develop an Ussing chamber technique for the functional assessment of transport activities in epithelia of marine bivalves. Kinetic studies revealed that the Ca2þ transfer across the OME consists of one saturable and one linear component, of which the saturable component fits best to Michaelis – Menten kinetics and is characterized by a Km of 6.2 mM and a Vmax of 3.3 nM min21. The transcellular transfer of Ca2þ accounts for approximately 60% of the total Ca2þ transfer across the OME of C. gigas at environmental Ca2þ concentrations. The use of the pharmacological inhibitors: verapamil, ouabain and caloxin 1a1 revealed that voltage-gated Ca2þ-channels, plasma-membrane Ca2þ-ATPase and Naþ/Ca2þ-exchanger all participate in the transcellular Ca2þ transfer across the OME and a model for this Ca2þ transfer is presented and discussed.
Author supplied keywords
Cite
CITATION STYLE
Kirsikka Sillanpää, J., Sundh, H., & Sundell, K. S. (2018). Calcium transfer across the outer mantle epithelium in the Pacific oyster, Crassostrea gigas. Proceedings of the Royal Society B: Biological Sciences, 285(1891). https://doi.org/10.1098/rspb.2018.1676
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.