How pressure enhances the critical temperature of superconductivity in YBa2Cu3O6+y

13Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

High-temperature superconducting cuprates respond to doping with a dome-like dependence of their critical temperature (Tc). But the family-specific maximum Tc can be surpassed by application of pressure, a compelling observation known for decades. We investigate the phenomenon with high-pressure anvil cell NMR and measure the charge content at planar Cu and O, and with it the doping of the ubiquitous CuO2 plane with atomic-scale resolution. We find that pressure increases the overall hole doping, as widely assumed, but when it enhances Tc above what can be achieved by doping, pressure leads to a hole redistribution favoring planar O. This is similar to the observation that the family-specific maximum Tc is higher for materials where the hole content at planar O is higher at the expense of that at planar Cu. The latter reflects dependence of the maximum Tc on the Cu–O bond covalence and the charge-transfer gap. The results presented here indicate that the pressure-induced enhancement of the maximum Tc points to the same mechanism.

Author supplied keywords

Cite

CITATION STYLE

APA

Jurkutat, M., Kattinger, C., Tsankov, S., Reznicek, R., Erb, A., & Haase, J. (2023). How pressure enhances the critical temperature of superconductivity in YBa2Cu3O6+y. Proceedings of the National Academy of Sciences of the United States of America, 120(2). https://doi.org/10.1073/pnas.2215458120

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free