C-3 Epimerization of Vitamin D3 Metabolites and Further Metabolism of C-3 Epimers

  • Kamao M
  • Tatematsu S
  • Hatakeyama S
  • et al.
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, it was revealed that 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and 24R,25-dihydroxyvitamin D3 (24,25(OH)2D3) were metabolized to their respective epimers of the hydroxyl group at C-3 of the A-ring. We now report the isolation and structural assignment of 3-epi-25-hydroxyvitamin D3 (3-epi-25(OH)D3 as a major metabolite of 25-hydroxyvitamin D3 (25(OH)D3) and the further metabolism of C-3 epimers of vitamin D3 metabolites. When 25(OH)D3 was incubated with various cultured cells including osteosarcoma, colon adenocarcinoma, and hepatoblastoma cell lines, 3-epi-25(OH)D3 and 24,25 (OH)2D3 were commonly observed as a major and minor metabolite of 25(OH)D3, respectively. 25(OH)D3 was at least as sensitive to C-3 epimerization as 1alpha, 25(OH)2D3 which has been reported as a substrate for the C-3 epimerization reaction. Unlike these cultured cells, LLC-PK1 cells, a porcine kidney cell line, preferentially produced 24,25(OH)2D3 rather than 3-epi-25(OH)D3. We also confirmed the existence of 3-epi-25(OH)D3 in the serum of rats intravenously given pharmacological doses of 25(OH)D3. The cultured cells metabolized 3-epi-25OHD3 and 3-epi-1alpha,25(OH)2D3 to 3-epi-24,25(OH)2D3 and 3-epi-1alpha,24,25(OH)3D3, respectively. In addition, we demonstrated that 3-epi-25(OH)D3 was metabolized to 3-epi-1alpha,25(OH)2D3 by CYP27B1 and to 3-epi-24,25(OH)2D3 by CYP24 using recombinant Escherichia coli cell systems. 3-Epi-25(OH)D3, 3-epi-1alpha,25(OH)2D3, and 3-epi-24,25(OH)2D3 were biologically less active than 25(OH)D3, 1alpha,25(OH)2D3, and 24,25(OH)2D3, but 3-epi-1alpha,25(OH)2D3 showed to some extent transcriptional activity toward target genes and anti-proliferative/differentiation-inducing activity against human myeloid leukemia cells (HL-60). These results indicate that C-3 epimerization may be a common metabolic pathway for the major metabolites of vitamin D3.

Cite

CITATION STYLE

APA

Kamao, M., Tatematsu, S., Hatakeyama, S., Sakaki, T., Sawada, N., Inouye, K., … Okano, T. (2004). C-3 Epimerization of Vitamin D3 Metabolites and Further Metabolism of C-3 Epimers. Journal of Biological Chemistry, 279(16), 15897–15907. https://doi.org/10.1074/jbc.m311473200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free