Recent automated glaucoma detection techniques using color fundus images

N/ACitations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

One of the areas in which C-DAC, Mohali is actively engaged, is development of AI powered fundus imaging system providing insight into several severe eye diseases. Glaucoma, one of the most hazardous ocular disease, continues to affect and burden a large section of our population. Neuropathy of optic nerve cells is the prime cause of glaucoma and is the second leading cause of blindness worldwide. It doesn’t manifest itself and is often termed as the silent thief of eye sight. The damage caused by glaucoma is irreversible. Therefore, it is imperative to detect glaucoma at an early stage. The medical literature related to glaucoma indicates that glaucoma detection is a complex process and depends on combination of several parameters. The conventional methods of hand-crafted feature extraction are tedious, time consuming and require human intervention. Even though many such systems have recently shown promising results, but these systems require extensive feature engineering and have limited representation power owing to varied morphology of the optic nerve head. Most of the proposed systems have targeted the parameter cup to disc ratio (CDR) for detection of glaucoma, but that may not be the best approach for building efficient, robust and accurate automated system for glaucoma diagnosis. This paper advocates the use of hybrid approach of manual feature crafting with deep learning. It holds promise of improving the accuracy of glaucoma diagnosis through the automated techniques. It is further proposed that if diagnosis based on CDR remains inconclusive other methods of diagnosis should be adopted to come to a certain conclusion.

Cite

CITATION STYLE

APA

Kaur, P., & Khoslad, P. K. (2019). Recent automated glaucoma detection techniques using color fundus images. International Journal of Innovative Technology and Exploring Engineering, 8(9 Special Issue), 737–742. https://doi.org/10.35940/ijitee.I1119.0789S19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free