A Study of Simulation of the Urban Space 3D Temperature Field at a Community Scale Based on High-Resolution Remote Sensing and CFD

8Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

This study used high-resolution remote-sensing technology and CFD models to carry out a simulation study of a three-dimensional (3D) USTE for daytime and nighttime at a block scale. Firstly, the influence of vegetation with different spatial layouts on the 3D USTE was analyzed. Moreover, the heat transfer process and heat conduction process between urban surface components at the block scale were simulated, and in the meanwhile, the distribution and changes of the 3D USTE and the regional wind pressure environment were monitored. The simulation results showed that (1) vegetation has a relatively significant mitigation effect on the thermal environment near the surface, (2) vegetation with different morphologies and layouts results in significant differences in the mitigation efficiency of wind speed and canyon USTE, and (3) the seasonal spatial 3D temperature can be mitigated as well. In addition, this study analyzed the mitigation effect of vegetation on the urban wind–heat environment during both daytime and nighttime. The results indicated that (1) the mitigation effect of vegetation is more significant during the daytime, while showing a small value at night with an even temperature distribution, and (2) convection heat transfer is the primary cause, or one of the major causes, of differences in the USTE.

Cite

CITATION STYLE

APA

Huo, H., & Chen, F. (2022). A Study of Simulation of the Urban Space 3D Temperature Field at a Community Scale Based on High-Resolution Remote Sensing and CFD. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133174

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free