Transcriptome sequencing and comparative analysis of Piptoporus betulinus in response to birch sawdust induction

4Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Piptoporus betulinus, a brown-rot parasitic fungus of birch trees (Betula species), has been used as a common anti-parasitic and antibacterial agent. The lack of genetic resource data for P. betulinus has limited the exploration of this species. In this present study, we used Illumina Hiseq 2500 technology to examine the transcriptome assembly of P. betulinus in response to birch sawdust induction. By de novo assembly, 21,882 non-redundant unigenes were yielded, and 21,255 (97.1%) were annotated with known gene sequences. A total of 340 responsive unigenes were highly homologous with putative lignocellulose-degrading enzyme candidates. Additionally, 86 unigenes might be involved in the chemical reaction in xenobiotics biodegradation and metabolism, which suggests that this fungus could convert xenobiotic materials and has the potential ability to clean up environmental pollutants. To our knowledge, this was the first study on transcriptome sequencing and comparative analysis of P. betulinus, which provided a better understanding of molecular mechanisms underlying birch sawdust induction and identified lignocelluloses degrading enzymes.

Cite

CITATION STYLE

APA

Yang, L., Peng, M., Shah, S. S., & Wang, Q. (2017). Transcriptome sequencing and comparative analysis of Piptoporus betulinus in response to birch sawdust induction. Forests, 8(10). https://doi.org/10.3390/f8100374

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free