Abstract
Mrk 509 was observed by XMM-Newton and INTEGRAL in October/November 2009, with one observation every four days for a total of ten observations. Each observation has been fitted with a realistic thermal Comptonization model for the continuum emission. Prompted by the correlation between the UV and soft X-ray flux, we used a thermal Comptonization component for the soft X-ray excess. The UV to X-ray/gamma-ray emission of Mrk 509 can be well fitted by these components, pointing to the existence of a hot (kT ∼ 100 keV), optically-thin (τ ∼ 0.5) corona producing the primary continuum. In contrast, the soft X-ray component requires a warm (kT ∼ 1 keV), optically-thick (τ ∼ 10-20) plasma. Estimates of the amplification ratio for this warm plasma support a configuration relatively close to the "theoretical" configuration of a slab corona above a passive disk. This plasma could be the warm upper layer of the accretion disk. In contrast, the hot corona has a more photon-starved geometry. The high temperature (∼ 100 eV) of the soft-photon field entering and cooling it favors a localization of the hot corona in the inner flow. This soft-photon field could be part of the comptonized emission produced by the warm plasma. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.
Cite
CITATION STYLE
Petrucci, P. O., Paltani, S., Malzac, J., Kaastra, J., Cappi, M., Ponti, G., … Lubiński, P. (2012). Multiwavelength campaign on Mrk 509. Testing realistic Comptonization models. In Proceedings of Science. https://doi.org/10.22323/1.176.0063
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.