Accuracy of genomic-polygenic estimated breeding value for milk yield and fat yield in the Thai multibreed dairy population with five single nucleotide polymorphism sets

6Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Objective: The objectives were to compare variance components, genetic parameters, prediction accuracies, and genomicpolygenic estimated breeding value (EBV) rankings for milk yield (MY) and fat yield (FY) in the Thai multibreed dairy population using five single nucleotide polymorphism (SNP) sets from GeneSeek GGP80K chip. Methods: The dataset contained monthly MY and FY of 8,361 firstlactation cows from 810 farms. Variance components, genetic parameters, and EBV for five SNP sets from the GeneSeek GGP80K chip were obtained using a 2trait singlestep averageinformation restricted maximum likelihood procedure. The SNP sets were the complete SNP set (all available SNP; SNP100), top 75% set (SNP75), top 50% set (SNP50), top 25% set (SNP25), and top 5% set (SNP5). The 2trait models included herdyearseason, heterozygosity and age at first calving as fixed effects, and animal additive genetic and residual as random effects. Results: The estimates of additive genetic variances for MY and FY from SNP subsets were mostly higher than those of the complete set. The SNP25 MY and FY heritability estimates (0.276 and 0.183) were higher than those from SNP75 (0.265 and 0.168), SNP50 (0.275 and 0.179), SNP5 (0.231 and 0.169), and SNP100 (0.251and 0.159). The SNP25 EBV accuracies for MY and FY (39.76% and 33.82%) were higher than for SNP75 (35.01% and 32.60%), SNP50 (39.64% and 33.38%), SNP5 (38.61% and 29.70%), and SNP100 (34.43% and 31.61%). All rank correlations between SNP100 and SNP subsets were above 0.98 for both traits, except for SNP100 and SNP5 (0.93 for MY; 0.92 for FY). Conclusion: The high SNP25 estimates of genetic variances, heritabilities, EBV accuracies, and rank correlations between SNP100 and SNP25 for MY and FY indicated that genotyping animals with SNP25 dedicated chip would be a suitable to maintain genotyping costs low while speeding up genetic progress for MY and FY in the Thai dairy population.

Cite

CITATION STYLE

APA

Wongpom, B., Koonawootrittriron, S., Elzo, M. A., Suwanasopee, T., & Jattawa, D. (2019). Accuracy of genomic-polygenic estimated breeding value for milk yield and fat yield in the Thai multibreed dairy population with five single nucleotide polymorphism sets. Asian-Australasian Journal of Animal Sciences, 32(9), 1340–1348. https://doi.org/10.5713/ajas.18.0816

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free