Efficient Green Synthesis of (Fe3O4) and (NiFe2O4) Nanoparticles Using Star Anise (Illicium verum) Extract and Their Biomedical Activity against Some Cancer Cells

21Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

Abstract

Magnetite Fe3O4 and spinel (2:1) and (4:1) NiFe2O4 magnetic nanoparticles (MNPs) were prepared by simple and affordable co-precipitation methods using an extract of star anise (Illicium verum) as a green reducing agent. The morphology and chemical composition of these MNPs were confirmed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV–visible spectroscopy, and X-ray diffraction (XRD). The synthesized magnetite Fe3O4 and spinel (2:1) and (4:1) NiFe2O4 MNPs were in the size range of 0.1–1 µm. The MNPs had irregular clustered platelets (magnetite Fe3O4) and pyramidal structures (spinel (2:1) and (4:1) NiFe2O4 NPs). The average sizes of the synthesized magnetite Fe3O4, and spinel (2:1) and (4:1) NiFe2O4 MNPs calculated using XRD analysis were 66.8, 72.5, and 72.9 nm, respectively. In addition to the characteristic absorption peaks of magnetite Fe3O4, those of spinel (2:1) and (4:1) NiFe2O4 MNPs were detected at ~300–350 nm and ~700 nm, respectively. Overall, the results of this study indicate that the synthesized magnetite Fe3O4, and spinel (2:1) and (4:1) NiFe2O4 MNPs showed high biomedical activities against liver carcinoma cells and non-small lung adenocarcinoma cells.

Cite

CITATION STYLE

APA

Al-Qasmi, N., Almughem, F. A., Jarallah, S. J., & Almaabadi, A. (2022). Efficient Green Synthesis of (Fe3O4) and (NiFe2O4) Nanoparticles Using Star Anise (Illicium verum) Extract and Their Biomedical Activity against Some Cancer Cells. Materials, 15(14). https://doi.org/10.3390/ma15144832

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free