1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors

114Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

N6-methyladenosine (m6A) is the most frequent of the 160 RNA modifications reported so far. Accumulating evidence suggests that the METTL3/METTL14 protein complex, part of the m6A regulation machinery, is a key player in a variety of diseases including several types of cancer, type 2 diabetes, and viral infections. Here we report on a protein crystallography-based medicinal chemistry optimization of a METTL3 hit compound that has resulted in a 1400-fold potency improvement (IC50 of 5 nM for the lead compound 22 (UZH2) in a time-resolved Förster resonance energy transfer (TR-FRET) assay). The series has favorable ADME properties as physicochemical characteristics were taken into account during hit optimization. UZH2 shows target engagement in cells and is able to reduce the m6A/A level of polyadenylated RNA in MOLM-13 (acute myeloid leukemia) and PC-3 (prostate cancer) cell lines.

Cite

CITATION STYLE

APA

Dolbois, A., Bedi, R. K., Bochenkova, E., Müller, A., Moroz-Omori, E. V., Huang, D., & Caflisch, A. (2021). 1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors. Journal of Medicinal Chemistry, 64(17), 12738–12760. https://doi.org/10.1021/acs.jmedchem.1c00773

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free