Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish

9Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Over the past two decades, the teleost vertebrate Danio rerio (zebrafish) has emerged as a model for hemostasis and thrombosis. At genomic and functional levels, there is a high degree of conservation of the hemostatic system with that of mammals. Numerous features of the fish model offer unique advantages for investigating hemostasis and thrombosis. These include high fecundity, rapid and external development, optical transparency, and extensive functional homology with mammalian hemostasis and thrombosis. Zebrafish are particularly suited to genome-wide mutagenesis experiments for the study of modifier genes. They are also amenable to whole-organism small-molecule screens, a feature that is exceptionally relevant to hemostasis and thrombosis. Zebrafish coagulation factor knockouts that are in utero or neonatal lethal in mammals survive into adulthood before succumbing to hemorrhage or thrombosis, enabling studies not possible in mammals. In this illustrated review, we outline how zebrafish have been employed for the study of hemostasis and thrombosis using modern genome editing techniques, coagulation assays in larvae, and in vivo evaluation of patient-specific variants to infer causality and demonstrate pathogenicity. Zebrafish hemostasis and thrombosis models will continue to serve as a clinically directed basic research tool and powerful alternative to mammals for the development of new diagnostic markers and novel therapeutics for coagulation disorders through high-throughput genetic and small-molecule studies. (Figure presented.).

Cite

CITATION STYLE

APA

Raghunath, A., Ferguson, A. C., & Shavit, J. A. (2022). Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish. Research and Practice in Thrombosis and Haemostasis, 6(5). https://doi.org/10.1002/rth2.12759

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free