Mechanical Nanoscale Polarization Control in Ferroelectric PVDF-TrFE Films

15Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ferroelectric polymer films offer strong advantages like mechanical flexibility, biocompatibility, optical transparency, and low-cost processing. However, their dielectric or piezoelectric performance is often inferior to that of oxide ferroelectric materials. Key to the dielectric or piezoelectric performance of semicrystalline polymers is the enhancement of electric dipolar order that is naturally lower than in crystalline ferroelectrics. Here, reorientation and alignment of the electric polarization in thin films by the mechanical effect of a scanning unbiased force microscopy tip is demonstrated as a versatile tool for nanoscale domain writing. Thin films (50–150 nm) of PVDF-TrFE (78:22) on graphite are prepared with dense (110)-oriented β-phase lamellae randomly oriented in the film plane. The in-plane polarization can be poled “mechanically” along any deliberately chosen direction in the film plane after vertical electric poling. Domain patterns with resolution down to ≈50 nm are written with four (out of six possible) local polarization orientations. Written domains show excellent long-time stability. The surface roughening from the mechanical treatment is moderate (rms roughness of 2–3 nm). A ferroelastic origin of the mechanical polarization switching is discussed. Finally, suggestions are made how to utilize the domain patterns in thin film devices.

Cite

CITATION STYLE

APA

Roth, R., Koch, M. M., Rata, A. D., & Dörr, K. (2022). Mechanical Nanoscale Polarization Control in Ferroelectric PVDF-TrFE Films. Advanced Electronic Materials, 8(6). https://doi.org/10.1002/aelm.202101416

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free