El concepto de correlación implica contar con un par de observaciones (X y Y), es decir, el valor que toma Y para determinado valor de X; la correlación permite examinar la tendencia de dos variables a ir juntas, por ejemplo, sabemos que al incrementar la edad también aumentan las cifras de presión arterial, por lo tanto, si queremos responder una pregunta de investigación como ¿cuál es la relación entre edad y presión arterial?, la prueba estadística pertinente es una prueba de correlación. Esta prueba permite cuantificar la magnitud de la correlación entre dos variables y ayuda a predecir valores. Si estas variables tuvieran una correlación perfecta se podría inferir el valor de la variable Y conociendo el valor de X. Debido a estas ventajas, la correlación es una de las pruebas más usadas en el ámbito clínico, ya que además de medir la dirección y magnitud de la asociación de dos variables, es uno de los fundamentos de los modelos de predicción, como los modelos de regresión lineal, logística y riesgos proporcionales de Cox.
CITATION STYLE
Roy-García, I., Rivas-Ruiz, R., Pérez-Rodríguez, M., & Palacios-Cruz, L. (2019). Correlación: no toda correlación implica causalidad. Revista Alergia México, 66(3), 354–360. https://doi.org/10.29262/ram.v66i3.651
Mendeley helps you to discover research relevant for your work.