Anticipative QoS Control: A Self-Reconfigurable On-Chip Communication

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

A self-reconfigurable Network-on-Chip (NoC) architecture that supports anticipative Quality of Service (QoS) control with penetrative switch ability is proposed to enhance the performance of bidirectional-channel NoC communication while supporting prioritized packet transmission services. The anticipative QoS control not only allows each communication channel to be dynamically self-configured to transmit flits in either direction for a better channel utilization of on-chip hardware resources, but also enhances the latency performance for QoS services. The proposed anticipative control is based on penetratingly observing channel direction requests of routers that is two hops away from the current one. The added ability enables a router to allocate high-priority packets to a dedicated virtual channel and then rapidly bypass it to the next destination router. The provided flexibility of packet switch promises better channel bandwidth utilization, lower packet delivery latency, and furthermore guarantees the high-priority packets being served with a better QoS. Accordingly, in this paper, an enhanced NoC architecture supporting the hybrid anticipative QoS, penetrative switch, and bidirectional-channel control, namely Anticipative QoS Bidirectional-channel NoC (AQ-BiNoC) is presented. Tested with cycle-accurate synthetic traffic patterns, significant performance enhancement has been observed when the proposed AQ-BiNoC architecture is compared against conventional NoC designs.

Cite

CITATION STYLE

APA

Tsai, W. C., Lin, H. E., Lan, Y. C., & Chen, S. J. (2022). Anticipative QoS Control: A Self-Reconfigurable On-Chip Communication. Micromachines, 13(10). https://doi.org/10.3390/mi13101669

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free