Infiltration and inflow (I/I) of unwanted water in separate urban sewer networks are critical issues for sustainable urban water management. Accurate quantification of unwanted water I/I from individual sources into a sewer system is an essential task for assessing the status of the sewer network and conducting rehabilitation measures. The study aim was to quantify extraneous water I/I into a sanitary sewer network by a temperature-based method, i.e., fiber-optic distributed temperature sensing (DTS), which was applied for the first time in a separate sewer network of a catchment in Trondheim, Norway. The DTS technology is a relatively new technology for sewer monitoring, developed over the past decade. It is based on continual temperature measurement along a fiber-optic cable installed in the sewer network. The feasibility of this method has been tested in both experimental discharges and for the rainfall-derived I/I. The results achieved from the monitoring campaign established the promising applicability of the DTS technique in the quantification analysis. Furthermore, the application of this method in quantifying real-life, rainfall-derived I/I into the sewer system was demonstrated and verified during wet weather conditions.
CITATION STYLE
Beheshti, M., & Sægrov, S. (2018). Quantification assessment of extraneous water infiltration and inflow by analysis of the thermal behavior of the sewer network. Water (Switzerland), 10(8). https://doi.org/10.3390/w10081070
Mendeley helps you to discover research relevant for your work.