Hierarchical emotional episodic memory for social human robot collaboration

14Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

For social human robot collaboration, robots need to effectively remember human experiences and manage emotional experiences as well as repetitive experiences. To implement these functions, the hierarchical emotional episodic memory, using deep adaptive resonance theory network, is proposed in this paper. The proposed memory not only learns emotional experiences, but also has the ability to anticipate future emotional situations. Two parameter modulation processes, delayed consolidation and instant update, are provided. These make emotional experiences reinforce faster, remain for longer, and become more stable and sensitive to analogous experiences. Simulation analysis is conducted to verify the proposed memory, and an experiment is carried out in a kitchen environment to demonstrate social human robot collaboration.

Author supplied keywords

Cite

CITATION STYLE

APA

Lee, W. H., & Kim, J. H. (2018). Hierarchical emotional episodic memory for social human robot collaboration. Autonomous Robots, 42(5), 1087–1102. https://doi.org/10.1007/s10514-017-9679-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free