Abstract
We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter-1, a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter-1. Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096- amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability.
Cite
CITATION STYLE
Doré, J., Marmeisse, R., Combier, J. P., & Gay, G. (2014). A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation. Molecular Plant-Microbe Interactions, 27(10), 1059–1069. https://doi.org/10.1094/MPMI-03-14-0087-R
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.