Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Nanomaterials can be game-changers in the arena of sustainable energy production because they may enable highly efficient thermoelectric energy conversion and harvesting. For this purpose, doped thin film oxides have been proven to be promising systems for achieving high thermoelectric performances. In this work, the design, realization, and experimental investigation of the thermoelectric properties exhibited by a set of five Al:ZnO thin films with thicknesses of 300 nm and Al doping levels ranging from 2 to 8 at.% are described. Using a multi-technique approach, the main structural and morphological features of the grown thin films are addressed, as well as the electrical and thermoelectrical transport properties. The results show that the samples exhibited a Seebeck coefficient absolute value in the range of 22–33 μV/K, assuming their maximum doping level was 8 at.%, while the samples’ resistivity was decreased below 2 × 10−3 Ohm·cm with a doping level of 3 at.%. The findings shine light on the perspectives of the applications of the metal ZnO thin film technology for thermoelectrics.

Cite

CITATION STYLE

APA

Isram, M., Magrin Maffei, R., Demontis, V., Martini, L., Forti, S., Coletti, C., … Rossella, F. (2023). Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios. Coatings, 13(4). https://doi.org/10.3390/coatings13040691

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free