Inhibition of polyadenylation by stable RNA secondary structure

50Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The presence of a polyadenylation signal in the repeat (R) region of the HIV-1 genome, which is located at both the 5' and 3' ends of the viral transcripts, requires differential regulation of polyadenylation. The HIV-1 poly(A) site can fold in a stable stem-loop structure that is well-conserved among different human and simian immunodeficiency viruses. In this study, we tested the effect of this hairpin on polyadenylation by introducing mutations that either stabilize or destabilize the RNA structure. The HIV-1 sequences were inserted into the pSV2CAT reporter plasmid upstream of the SV40 early poly(A) site. These constructs were transfected into COS cells and transcripts were analyzed for the usage of the HIV-1 versus SV40 poly(A) site. The wild-type HIV-1 poly(A) site was used efficiently in this context and destabilization of the poly(A) hairpin did not affect the polyadenylation efficiency. In contrast, further stabilization of the hairpin severely inhibited HIV-1 polyadenylation. Additional mutations that repair the thermodynamic stability of this mutant hairpin restored the polyadenylation activity. These results indicate that the mechanism of polyadenylation can be repressed by stable RNA structure encompassing the poly(A) signal. Experiments performed at reduced temperatures also suggest an inverse correlation between the stability of the RNA structure and the efficiency of polyadenylation.

Cite

CITATION STYLE

APA

Klasens, B. I. F., Das, A. T., & Berkhout, B. (1998). Inhibition of polyadenylation by stable RNA secondary structure. Nucleic Acids Research, 26(8), 1870–1876. https://doi.org/10.1093/nar/26.8.1870

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free