This study investigated the physical and mechanical properties and the microstructure of four different gallium alloys. For all gallium alloys, the compressive strengths measured at one hour (86-223 MPa) and 24 hours (265-286 MPa) after specimen preparation were found to be well within the range exhibited by many high-copper amalgams. The creep values and dimensional change of the gallium alloys were comparable to those of leading amalgams, except for the dimensional change value of one alloy. The set gallium alloys consisted of a multi-phase structure including β-Sn, CuGa2, In4Ag9, Ag72Ga28, and Ga5Pd (except for one product that did not contain Pd) that was more complicated than the structure of dental amalgams. Although the gallium alloys had physical and mechanical properties comparable to those of high-copper amalgams, the microstructure, coupled with the instability of the element gallium itself, could make these materials more prone to corrosive attack compared to amalgams.
CITATION STYLE
Miller, B. H., Woldu, M., Nakajima, H., & Okabe, T. (1999). Strength and Microstructure of Gallium Alloys. Dental Materials Journal, 18(1), 96–107. https://doi.org/10.4012/dmj.18.96
Mendeley helps you to discover research relevant for your work.