MicroRNAs (miRNAs) have been proven to play crucial roles in cancer, including tumor chemotherapy resistance and metastasis of non-small-cell lung cancer (NSCLC). TGFβ signal pathway abnormality is widely found in cancer and correlates with tumor proliferation, apoptosis and metastasis. Here, miR-17, 20a, 20b were detected down-regulated in A549/DDP cells (cisplatin resistance) compared with A549 cells (cisplatin sensitive). Over-expression of miR-17, 20a, 20b can not only decrease cisplatin-resistant but also reduce migration by inhibiting epithelial-to-mesenchymal transition (EMT) in A549/DDP cells. These functions of miR-17, 20a, 20b may be caused at least in part via inhibition of TGFβ signal pathway, as miR-17, 20a, 20b are shown to directly target and repress TGF-beta receptor 2 (TGFβR2) which is an important component of TGFβ signal pathway. Consequently, our study suggests that miRNA 17 family (including miR-17, 20a, 20b) can act as TGFβR2 suppressor for reversing cisplatin-resistant and suppressing metastasis in NSCLC. © 2014 Jiang et al.
CITATION STYLE
Jiang, Z., Yin, J., Fu, W., Mo, Y., Pan, Y., Dai, L., … Zhao, J. (2014). miRNA 17 family regulates cisplatin-resistant and metastasis by targeting TGFbetaR2 in NSCLC. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094639
Mendeley helps you to discover research relevant for your work.