Phytohormone production profiles in trichoderma species and their relationship to wheat plant responses to water stress

74Citations
Citations of this article
133Readers
Mendeley users who have this article in their library.

Abstract

The production of eight phytohormones by Trichoderma species is described, as well as the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) activity, which diverts the ethylene biosynthetic pathway in plants. The use of the Trichoderma strains T. virens T49, T. longibrachiatum T68, T. spirale T75 and T. harzianum T115 served to demonstrate the diverse production of the phytohormones gibberellins (GA) GA1 and GA4, abscisic acid (ABA), salicylic acid (SA), auxin (indole-3-acetic acid: IAA) and the cytokinins (CK) dihydrozeatin (DHZ), isopenteniladenine (iP) and trans-zeatin (tZ) in this genus. Such production is dependent on strain and/or culture medium. These four strains showed different degrees of wheat root colonization. Fresh and dry weights, conductance, H2 O2 content and antioxidant activities such as superoxide dismutase, peroxidase and catalase were analyzed, under optimal irrigation and water stress conditions, on 30-days-old wheat plants treated with four-day-old Trichoderma cultures, obtained from potato dextrose broth (PDB) and PDB-tryptophan (Trp). The application of Trichoderma PDB cultures to wheat plants could be linked to the plants’ ability to adapt the antioxidant machinery and to tolerate water stress. Plants treated with PDB cultures of T49 and T115 had the significantly highest weights under water stress. Compared to controls, treatments with strains T68 and T75, with constrained GA1 and GA4 production, resulted in smaller plants regardless of fungal growth medium and irrigation regime.

Cite

CITATION STYLE

APA

Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R., & Monte, E. (2021). Phytohormone production profiles in trichoderma species and their relationship to wheat plant responses to water stress. Pathogens, 10(8). https://doi.org/10.3390/pathogens10080991

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free