Abstract
Galois theory for normal unramified coverings of finite irregular graphs (which may have multiedges and loops) is developed. Using Galois theory we provide a construction of intermediate coverings which generalizes the classical Cayley and Schreier graph constructions. Three different analogues of Artin L-functions are attached to these coverings. These three types are based on vertex variables, edge variables, and path variables. Analogues of all the standard Artin L-functions results for number fields are proved here for all three types of L-functions. In particular, we obtain factorization formulas for the zeta functions introduced in Part I as a product of L-functions. It is shown that the path L-functions, which depend only on the rank of the graph, can be specialized to give the edge L-functions, and these in turn can be specialized to give the vertex L-functions. The method of Bass is used to show that Ihara type quadratic formulas hold for vertex L-functions. Finally, we use the theory to give examples of two regular graphs (without multiple edges or loops) having the same vertex zeta functions. These graphs are also isospectral but not isomorphic. © 2000 Academic Press.
Cite
CITATION STYLE
Stark, H. M., & Terras, A. A. (2000). Zeta functions of finite graphs and coverings, part II. Advances in Mathematics, 154(1), 132–195. https://doi.org/10.1006/aima.2000.1917
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.