Abstract
A multi-domain synthetic peptide, F2A4-K-NS, mimicked the action of recombinant human FGF-2 (rhFGF-2) in vitro and in an in vivo model of angiogenesis. Like rhFGF-2, F2A4-K-NS was quantitatively shown to bind to FGF receptors in a cell-free receptor binding assay using a chimeric FGFR1 (IIIc)/Fc as monitored by surface plasmon resonance (SPR), and also shown to bind to heparin using biotinylated low-molecular weight heparin in a similar SPR assay. In vitro, F2A4-K-NS triggered signal transduction as monitored by the stimulation of ERK1/2 phosphorylation in human umbilical cord endothelial cells. In cell based assays, it increased cell migration, cell proliferation, and gelatinase secretion; endpoints associated with FGF-2 stimulation. Furthermore, these in vitro effects were mediated with quantities of F2A4-K-NS that were similar to those of rhFGF-2. In vivo, F2A4-K-NS was angiogenic at doses of 40 and 400 ng/implant in a subcutaneous implant assay as determined by morphologic scoring, hemoglobin content, and histology. These results support the hypothesis that F2A4-K-NS is a mimetic of FGF-2 that can substitute for FGF-2 in vitro and in vivo. A synthetic mimetic of FGF-2, such as F2A4-K-NS, could be a useful tool in studying mechanisms of cell activation and potentially in various therapeutic applications.
Author supplied keywords
Cite
CITATION STYLE
Lin, X., Takahashi, K., Campion, S. L., Liu, Y., Gustavsen, G. G., Peña, L. A., & Zamora, P. O. (2006). Synthetic peptide F2A4-K-NS mimics fibroblast growth factor-2 in vitro and is angiogenic in vivo. International Journal of Molecular Medicine, 17(5), 833–839. https://doi.org/10.3892/ijmm.17.5.833
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.