To deal with the present power-scenario, this paper proposes a model of an advanced energy management system, which tries to achieve peak clipping, peak to average ratio reduction and cost reduction based on effective utilization of distributed generations. This helps to manage conventional loads based on flexible tariff system. The main contribution of this work is the development of three-part dynamic tariff system on the basis of time of utilizing power, available renewable energy sources (RES) and consumers' load profile. This incorporates consumers' choice to suitably select for either consuming power from conventional energy sources and/or renewable energy sources during peak or off-peak hours. To validate the efficiency of the proposed model we have comparatively evaluated the model performance with existing optimization techniques using genetic algorithm and particle swarm optimization. A new optimization technique, hybrid greedy particle swarm optimization has been proposed which is based on the two aforementioned techniques. It is found that the proposed model is superior with the improved tariff scheme when subjected to load management and consumers' financial benefit. This work leads to maintain a healthy relationship between the utility sectors and the consumers, thereby making the existing grid more reliable, robust, flexible yet cost effective.
CITATION STYLE
Goswami, K., & Sil, A. K. (2022). Renewable energy based dynamic tariff system for domestic load management. Indonesian Journal of Electrical Engineering and Computer Science, 25(2), 626–638. https://doi.org/10.11591/ijeecs.v25.i2.pp626-638
Mendeley helps you to discover research relevant for your work.