Drop motion induced by vertical vibrations

66Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We have studied the motion of liquid drops on an inclined plate subject to vertical vibrations. The liquids comprised distilled water and different aqueous solutions of glycerol, ethanol and isopropanol spanning the range 1-39 mm2 s-1 in kinematic viscosities and 40-72 mN m-1 in surface tension. At sufficiently low oscillating amplitudes, the drops are always pinned to the surface. Vibrating the plate above a certain amplitude yields sliding of the drop. Further increasing the oscillating amplitude drives the drop upward against gravity. In the case of the most hydrophilic aqueous solutions, this motion is not observed and the drop only slides downward. Images taken with a fast camera show that the drop profile evolves in a different way during sliding and climbing. In particular, the climbing drop experiences a much bigger variation in its profile during an oscillating period. Complementary numerical simulations of 2D drops based on a diffuse interface approach confirm the experimental findings. The overall qualitative behavior is reproduced suggesting that the contact line pinning due to contact angle hysteresis is not necessary to explain the drop climbing.

Cite

CITATION STYLE

APA

Sartori, P., Quagliati, D., Varagnolo, S., Pierno, M., Mistura, G., Magaletti, F., & Casciola, C. M. (2015). Drop motion induced by vertical vibrations. New Journal of Physics, 17(11). https://doi.org/10.1088/1367-2630/17/11/113017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free