Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in regulating the host immune response. Here we found that miR-22 is induced in glial cells upon stimulation with poly(I:C). Overexpression of miR-22 in the cultured cells resulted in decreased activity of interferon regulatory factor-3 and nuclear factor-kappa B, which in turn led to reduced expression of interferon-β and inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and chemokine (C-C motif) ligand 5, upon stimulation with poly(I:C), whereas knockdown of miR-22 had the opposite effect. We used a combination of bioinformatics and experimental techniques to demonstrate that mitochondrial antiviral signaling protein (MAVS), which positively regulates type I interferon production, is a novel target of miR-22. Overexpression of miR-22 decreased the activity of a luciferase reporter containing the MAVS 3'-untranslated region and led to decreased MAVS mRNA and protein levels. In contrast, ectopic expression of miR-22 inhibitor led to elevated MAVS expression. Collectively, our results demonstrate that miR-22 negatively regulates poly(I:C)-induced production of type I interferon and inflammatory cytokines via targeting MAVS.
Author supplied keywords
Cite
CITATION STYLE
Wan, S., Ashraf, U., Ye, J., Duan, X., Zohaib, A., Wang, W., … Cao, S. (2016). MicroRNA-22 negatively regulates poly(I:C)-triggered type I interferon and inflammatory cytokine production via targeting mitochondrial antiviral signaling protein (MAVS). Oncotarget, 7(47), 76667–76683. https://doi.org/10.18632/oncotarget.12395
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.