Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation

188Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

In this research work, a twelve-term novel 5-D hyperchaotic Lorenz system with three quadratic nonlinearities has been derived by adding a feedback control to a ten-term 4-D hyperchaotic Lorenz system (Jia, 2007) with three quadratic nonlinearities. The 4-D hyperchaotic Lorenz system (Jia, 2007) has the Lyapunov exponents L1 = 0.3684,L2 = 0.2174,L3 = 0 and L4 =-12.9513, and the Kaplan-Yorke dimension of this 4-D system is found as DKY =3.0452. The 5-D novel hyperchaotic Lorenz system proposed in this work has the Lyapunov exponents L1 = 0.4195,L2 = 0.2430,L3 = 0.0145,L4 = 0 and L5 = -13.0405, and the Kaplan-Yorke dimension of this 5-D system is found as DKY =4.0159. Thus, the novel 5-D hyperchaotic Lorenz system has a maximal Lyapunov exponent (MLE), which is greater than the maximal Lyapunov exponent (MLE) of the 4-D hyperchaotic Lorenz system. The 5-D novel hyperchaotic Lorenz system has a unique equilibrium point at the origin, which is a saddle-point and hence unstable. Next, an adaptive controller is designed to stabilize the novel 5-D hyperchaotic Lorenz system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 5-D hyperchaotic Lorenz systems with unknown system parameters. Finally, an electronic circuit realization of the novel 5-D hyperchaotic Lorenz system using SPICE is described in detail to confirm the feasibility of the theoretical model.

Cite

CITATION STYLE

APA

Vaidyanathan, S., Volos, C., & Pham, V. T. (2014). Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Archives of Control Sciences, 24(4), 409–446. https://doi.org/10.2478/acsc-2014-0023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free