Gastruloid-derived primordial germ cell-like cells develop dynamically within integrated tissues

14Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Primordial germ cells (PGCs) are the early embryonic precursors of gametes - sperm and egg cells. PGC-like cells (PGCLCs) can currently be derived in vitro from pluripotent cells exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not recapitulate the native embryonic environment during PGC formation. Here, we show that mouse gastruloids, a three-dimensional in vitro model of gastrulation, contain a population of gastruloid-derived PGCLCs (Gld-PGCLCs) that resemble early PGCs in vivo. Importantly, the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal localisation of Gld-PGCLCs relative to surrounding somatic cells, even in the absence of specific exogenous PGC-specific signalling or extra-embryonic tissues. In gastruloids, self-organised interactions between cells and tissues, including the endodermal epithelium, enables the specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids represent a new source of PGCLCs in vitro and, owing to their inherent co-development, serve as a novel model to study the dynamics of PGC development within integrated tissue environments.

Cite

CITATION STYLE

APA

Cooke, C. B., Barrington, C., Baillie-Benson, P., Nichols, J., & Moris, N. (2023). Gastruloid-derived primordial germ cell-like cells develop dynamically within integrated tissues. Development (Cambridge), 150(17). https://doi.org/10.1242/dev.201790

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free